Package: sboost 0.1.2

sboost: Machine Learning with AdaBoost on Decision Stumps

Creates classifier for binary outcomes using Adaptive Boosting (AdaBoost) algorithm on decision stumps with a fast C++ implementation. For a description of AdaBoost, see Freund and Schapire (1997) <doi:10.1006/jcss.1997.1504>. This type of classifier is nonlinear, but easy to interpret and visualize. Feature vectors may be a combination of continuous (numeric) and categorical (string, factor) elements. Methods for classifier assessment, predictions, and cross-validation also included.

Authors:Jadon Wagstaff [aut, cre]

sboost_0.1.2.tar.gz
sboost_0.1.2.zip(r-4.5)sboost_0.1.2.zip(r-4.4)sboost_0.1.2.zip(r-4.3)
sboost_0.1.2.tgz(r-4.4-x86_64)sboost_0.1.2.tgz(r-4.4-arm64)sboost_0.1.2.tgz(r-4.3-x86_64)sboost_0.1.2.tgz(r-4.3-arm64)
sboost_0.1.2.tar.gz(r-4.5-noble)sboost_0.1.2.tar.gz(r-4.4-noble)
sboost_0.1.2.tgz(r-4.4-emscripten)sboost_0.1.2.tgz(r-4.3-emscripten)
sboost.pdf |sboost.html
sboost/json (API)
NEWS

# Install 'sboost' in R:
install.packages('sboost', repos = c('https://jadonwagstaff.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jadonwagstaff/sboost/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

3.00 score 2 stars 6 scripts 154 downloads 3 exports 17 dependencies

Last updated 3 years agofrom:aee4038080. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-win-x86_64OKOct 27 2024
R-4.5-linux-x86_64OKOct 27 2024
R-4.4-win-x86_64OKOct 27 2024
R-4.4-mac-x86_64OKOct 27 2024
R-4.4-mac-aarch64OKOct 27 2024
R-4.3-win-x86_64OKOct 27 2024
R-4.3-mac-x86_64OKOct 27 2024
R-4.3-mac-aarch64OKOct 27 2024

Exports:assesssboostvalidate

Dependencies:clidplyrfansigenericsgluelifecyclemagrittrpillarpkgconfigR6Rcpprlangtibbletidyselectutf8vctrswithr